twoXAR Announces Business Advisory Board


From Day 1, our vision at twoXAR has been to “improve health through computation”. We’ve taken many steps along this journey, such as collaborations with leading companies like Santen and breaking new ground in the path to more efficacious treatments in liver cancer. As we continue to build momentum and scale our aspirations to help as many patients as possible, we’re increasingly drawing upon the expertise of industry veterans to guide our strategic decision-making.

Given this, I’m pleased to announce the formation of twoXAR’s Business Advisory Board and welcome Judy Lewent, Jonathan MacQuitty, and Howie Rosen as we move forward on our company’s journey. Each of our advisors brings a unique perspective to our business as we continue to launch disease programs in collaboration with biopharmaceutical companies, investors, and drug development teams…

READ THE FULL POST AT MEDIUM.COM 

(ML)²: Myths and Legends of Machine Learning


Skepticism is (and should be) a vital part of any science; statistics and data science are no exception. Statistician George Box nicely summed it up when he said, “all models are wrong, but some are useful”. Box reminds us that statistical models are just that: models. A simplified representation of the real-world will always have shortcomings. But we shouldn’t forget the last bit of Box’s saying: “some [models] are useful”. Although challenging, carefully constructed statistical models can be extremely…

READ THE FULL POST AT MEDIUM.COM 

How machines are able to help you find a parking spot, a great place to stay, and the next medication you might take

These three accomplishments are all possible today because of machine learning.

Machine learning continues to disrupt markets and transform peoples’ everyday lives. Yet, the public is far removed from the actual technology that drives these changes. To many, the idea of machine learning may elicit images of complex mathematical formulas and sentient robots. In fact, many of the general ideas behind machine learning are approachable to a wider audience…

READ THE FULL POST AT MEDIUM.COM

Synergizing against breast cancer

I was about twelve when I found out my grandmother had breast cancer. My parents did a good job of shielding me from the worst of the details, but there is no way to avoid fear that comes from a loved one being diagnosed with cancer. As a kid, there wasn’t much I could do, but my grandmother loves to tell the story of me trying to comfort her by telling her I was going to do research to help cure her cancer. Little did I know at the time that treating cancer is not as simple as taking a pill once a day and that even identifying the right medicine is akin to finding a needle in a haystack.

Over the next seventeen years, as I pursued undergraduate and graduate studies in biology and genetics, I filled in those knowledge gaps, but felt no closer to changing the status quo of breast cancer…

READ THE FULL POST AT MEDIUM.COM

Positive Preclinical Proof-of-Concept Results For Liver Cancer Candidate, TXR-311

In September 2016, we announced a collaboration with the Asian Liver Center at Stanford University School of Medicine (the Asian Liver Center). The goal of this collaboration was to identify new drug candidates targeting hepatocellular carcinoma (HCC, the major form of adult liver cancer). Today, we announced a lead candidate, TXR-311, that has shown positive results in cell-based assays. I wanted to share a bit more background on liver cancer and details on why these results are exciting.

HCC is a primary cancer of the liver that tends to occur in patients with… 

READ THE FULL POST AT MEDIUM.COM

Seeing the power of AI in drug development

Today we announced our collaboration with Santen, a world leader in the development of innovative ophthalmology treatments. Scientists at twoXAR will use our proprietary computational drug discovery platform to discover, screen and prioritize novel drug candidates with potential application in glaucoma. Santen will then develop and commercialize drug candidates arising from the collaboration. This collaboration is an exciting example of how artificial intelligence-driven approaches can move beyond supporting existing hypotheses and lead the discovery of new drugs. Combining twoXAR’s unique capabilities with Santen’s experience in ophthalmic product development and commercialization… 

READ THE FULL POST AT MEDIUM.COM

The AI 100 & Combining Artificial Intelligence with Human Intelligence in Drug Development

We at twoXAR were very honored to be included this week in The AI 100, CBInsight’s list of top private Artificial Intelligence companies. It’s given me a chance to reflect on how we employ AI relative to others in the industry.

 Our focus is on drug development — and being one of the few biopharma companies to be included in the list, we use AI in a unique way. Where others may be using AI as the sole ingredient…

READ THE FULL POST AT MEDIUM.COM

Inspiration from the TEDMED Stage

As with many of my fellow Americans, I have been reflecting about events that have been highlighted in 2016 in the media. Racial strife, gun violence and a polarizing political environment were repeated themes throughout the year. Over dinners and social events, the conversations with friends and family have been morose at times, as many are wondering if society is taking a turn for the worse.

I’m here to tell you that isn’t the case — there is a dedicated group of talented individuals working quietly to make the world a better place.

As a recent speaker at TEDMED 2016, I was fortunate enough to meet dozens of these inspiring pioneers and watch them on stage answering a question…

READ THE FULL POST AT MEDIUM.COM

Consider Your Biases

In the wake of Donald Trump’s victory over Hillary Clinton, pundits and politicians alike have wondered, “how did we not predict this?” Theories range from misrepresentative polling to journalistic bias to confirmation bias, fueled by the echo chambers of social media. These fervent debates about bias in politics had me reflecting on the role that bias plays in science and in R&D. Sampling bias, expectancy bias, publication bias… all hazards of the profession and yet science is held up against other disciplines as relatively bias-free by virtue of its data-centric approach.

Biopharma R&D has rapidly evolved over the last few years — it is more collaborative, demands greater speed to respond to competition, and challenges many notions of “conventional” drug discovery. In my reflections, I was curious whether this rapid evolution was a harbinger of biases not conventionally associated with science — and wanted to understand how we at twoXAR aim to stay aware and ahead of such biases.

READ THE FULL POST AT MEDIUM.COM

Augmenting Drug Discovery with Computer Science

The short-list for the annual Arthur C. Clarke Award was recently announced and it reminded me of a post we did last fall on augmentation vs. automation. Clarke is a British science fiction writer who is famous for being the co-screenplay writer (with Stanley Kubrick) of the 1968 film 2001: A Space Odyssey. He is also known for the so-called Clarke’s Laws, which are three ideas intended to guide consideration of future scientific developments.

  1. When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is very probably wrong.
  2. The only way of discovering the limits of the possible is to venture a little way past them into the impossible.
  3. Any sufficiently advanced technology is indistinguishable from magic.

These laws resonate here at twoXAR where every week we meet with biopharma research executives who tell us — usually right after we say something like, “using our platform you can evaluate tens of thousands of drug candidates and identify their possible MOAs, evaluate chemical similarity, and screen for clinical evidence in minutes” — that’s “impossible” or “magic”!

READ THE FULL POST AT MEDIUM.COM