How Much Dirt is Too Much Dirt — Quality Metrics in Gene Expression Analysis

At twoXAR we bring together a lot of disparate data to rapidly identify disease treatments. It’s through these different data that we gain our predictive power. However, more data isn’t always better — not if the new data is of poor quality. In other words, quantity doesn’t trump quality, and that’s because of a common data science saying: bad data in = bad data out. Because of this, we check the quality of our input data at multiple levels; some of this is a manual process, but we automate as much as possible.

In July’s post, (ML)²: Myths and Legends of Machine Learning, I touched on the messiness of real world data and mentioned quality control checks; here, I will expand on that with an example of one of the checks we use for gene expression data…

READ THE FULL POST AT MEDIUM.COM

(ML)²: Myths and Legends of Machine Learning


Skepticism is (and should be) a vital part of any science; statistics and data science are no exception. Statistician George Box nicely summed it up when he said, “all models are wrong, but some are useful”. Box reminds us that statistical models are just that: models. A simplified representation of the real-world will always have shortcomings. But we shouldn’t forget the last bit of Box’s saying: “some [models] are useful”. Although challenging, carefully constructed statistical models can be extremely…

READ THE FULL POST AT MEDIUM.COM 

Synergizing against breast cancer

I was about twelve when I found out my grandmother had breast cancer. My parents did a good job of shielding me from the worst of the details, but there is no way to avoid fear that comes from a loved one being diagnosed with cancer. As a kid, there wasn’t much I could do, but my grandmother loves to tell the story of me trying to comfort her by telling her I was going to do research to help cure her cancer. Little did I know at the time that treating cancer is not as simple as taking a pill once a day and that even identifying the right medicine is akin to finding a needle in a haystack.

Over the next seventeen years, as I pursued undergraduate and graduate studies in biology and genetics, I filled in those knowledge gaps, but felt no closer to changing the status quo of breast cancer…

READ THE FULL POST AT MEDIUM.COM

Positive Preclinical Proof-of-Concept Results For Liver Cancer Candidate, TXR-311

In September 2016, we announced a collaboration with the Asian Liver Center at Stanford University School of Medicine (the Asian Liver Center). The goal of this collaboration was to identify new drug candidates targeting hepatocellular carcinoma (HCC, the major form of adult liver cancer). Today, we announced a lead candidate, TXR-311, that has shown positive results in cell-based assays. I wanted to share a bit more background on liver cancer and details on why these results are exciting.

HCC is a primary cancer of the liver that tends to occur in patients with… 

READ THE FULL POST AT MEDIUM.COM

Seeing the power of AI in drug development

Today we announced our collaboration with Santen, a world leader in the development of innovative ophthalmology treatments. Scientists at twoXAR will use our proprietary computational drug discovery platform to discover, screen and prioritize novel drug candidates with potential application in glaucoma. Santen will then develop and commercialize drug candidates arising from the collaboration. This collaboration is an exciting example of how artificial intelligence-driven approaches can move beyond supporting existing hypotheses and lead the discovery of new drugs. Combining twoXAR’s unique capabilities with Santen’s experience in ophthalmic product development and commercialization… 

READ THE FULL POST AT MEDIUM.COM

The AI 100 & Combining Artificial Intelligence with Human Intelligence in Drug Development

We at twoXAR were very honored to be included this week in The AI 100, CBInsight’s list of top private Artificial Intelligence companies. It’s given me a chance to reflect on how we employ AI relative to others in the industry.

 Our focus is on drug development — and being one of the few biopharma companies to be included in the list, we use AI in a unique way. Where others may be using AI as the sole ingredient…

READ THE FULL POST AT MEDIUM.COM

Augmenting Drug Discovery with Computer Science

The short-list for the annual Arthur C. Clarke Award was recently announced and it reminded me of a post we did last fall on augmentation vs. automation. Clarke is a British science fiction writer who is famous for being the co-screenplay writer (with Stanley Kubrick) of the 1968 film 2001: A Space Odyssey. He is also known for the so-called Clarke’s Laws, which are three ideas intended to guide consideration of future scientific developments.

  1. When a distinguished but elderly scientist states that something is possible, he is almost certainly right. When he states that something is impossible, he is very probably wrong.
  2. The only way of discovering the limits of the possible is to venture a little way past them into the impossible.
  3. Any sufficiently advanced technology is indistinguishable from magic.

These laws resonate here at twoXAR where every week we meet with biopharma research executives who tell us — usually right after we say something like, “using our platform you can evaluate tens of thousands of drug candidates and identify their possible MOAs, evaluate chemical similarity, and screen for clinical evidence in minutes” — that’s “impossible” or “magic”!

READ THE FULL POST AT MEDIUM.COM

Mission Possible: Software-driven Drug Discovery

Originally published at Life Science Leader Online.

In the 25-plus years since the modern Internet was launched we have seen virtually every industry evolve by leveraging the connected, global computing infrastructure we can now tap into any time, from anywhere. Today, advanced software programming tools like machine learning, massive data sets and cloud-based compute are making it easier than ever to rapidly launch and globally scale software-driven services without the capital expense that was once required.

The debate about whether or not software will eat drug discovery is not a new one and remains a topic that can raise voices. As a formally educated computer scientist and cofounder of a company focused on software-driven drug discovery, I come to the discussion with my own biases.

There is no shortage of software in today’s biopharma R&D organization. Cloud-based electronic data capture (EDC), laboratory information management systems (LIMS), process automation, and chemical informatics are just a few of the well-established tools that support R&D and have a meaningful impact. While software has become a …

Read the full piece at Life Science Leader Online.

The Power of “Lookup Biology”

Guest post by Marina Sirota, PhD, twoXAR Advisor and Assistant Professor, UCSF Institute for Computational Health Sciences

Earlier this month, Andrew A. Radin and I had the opportunity to attend acommunity outreach meeting at UC Irvine hosted by the NIH Libraries of Cellular Signatures (LINCS) consortium. It was a great and diverse community gathering of drug discovery researchers from academia, biopharma, startups, consulting companies and government funding agencies. For anyone interested in listening to the talks, some of them have been posted on YouTube.

The focus of day one was…

READ THE FULL POST AT MEDIUM.COM